Que 5:

Let $g(x)=\cos x^2$, $f(x)=\sqrt{x}$, and α , β (α < β) be the roots of the quadratic equation $18x^2-9\pi x+\pi^2=0$. Then the area (in sq. units)

bounded by the curve y = (gof)(x) and the lines $x = \alpha, x = \beta$ and y = 0, is:

[Main 2018]

(a)
$$\frac{1}{2}(\sqrt{3}+1)$$

(b)
$$\frac{1}{2}(\sqrt{3}-\sqrt{2})$$

(c)
$$\frac{1}{2}(\sqrt{2}-1)$$

(d)
$$\frac{1}{2}(\sqrt{3}-1)$$

solutions:

4. **(d)** Here,
$$18x^2 - 9\pi x + \pi^2 = 0$$

$$\Rightarrow$$
 $(3x - \pi)(6x - \pi) = 0 \Rightarrow \alpha = \frac{\pi}{6}, \beta = \frac{\pi}{3}$

Also, gof(x) = cosx

$$\therefore \text{ Req. area} = \int_{\pi/6}^{\pi/3} \cos x dx = \frac{\sqrt{3} - 1}{2}$$